Stresses in a grinding wheel

Keywords: grinding wheel; cutting force; tangential stress; normal stress; mechanical parameters.


The distribution of mechanical stresses in a part of a grinding wheel of limited size that can be compared with the size of grinding grains is investigated. The purpose of the paper is to establish a qualitative and quantitative dependency of stress distribution in the material of a grinding tool on a radial cutting force and mechanical properties of the material. The research was carried out by methods of linear theory of elasticity. The material of the circle is considered as isotopic with averaged value of a shear modulus. The mean value of a shear modulus is calculated by the method offered by Feucht. The radial force is added at a point at a depth equal to the size of the grinding grain. The stressed state is deter-mined by methods of theory of elasticity, within the boundaries of Mindolin problem with the use of a stress function. A solution for a case of load of several grains located on one line is formulat-ed. It is established that the normal stress in the material of a grinding wheel near the grain de-pends on the load of the adjacent grain. Its extreme value exceeds the corresponding stress on a single grain by 20-25%. A gradient stress increases along a grain height in a case of increasing the distance between the grains. As Poisson coefficient increases, the influence of the number of load-ed grains on the value of normal stress decreases. This influence increases on the value of the tan-gential stress. Redistribution of forces between the grains leads to an increase of an uneven distribution of stress in the material of a grinding wheel. In this case, the normal stress in planes that are tangent to the surface of a processed part increases by 10-12%, tangential stresses are twice as large. Tan-gential stresses in planes normal to the surface of interaction of the grinding wheel and the pro-cessed part increase the most. This increase reaches 50%. The frequency of interaction between the grains and the part leads to a periodic change in the stress in the wheel material. The change occurs from zero to maximum. Determination of endurance indices of grinding wheel materials for such periodic load changes should be considered as a direction of further research. Determining the latter will create the opportunity to optimize the technology of grinding and wear of grinding wheels.


Muzychka, D.G. (2015). Increase of grinding efficiency of solid alloys by a directed limitation of shape change of cutting surface of grinding wheels. Abstract to a PhD dissertation in a specialty 05.03.01 – Processes of mechanical processing, machines and instruments. Chernihiv national technical university. [In Ukrainian]
Музичка, Д.Г. (2015). Підвищення ефективності шліфування твердих сплавів спрямованим обмеженням формозміни різальної поверхні шліфувальних кругів. Автореф. дис. … канд. техн. наук: 05.03.01 – Процеси механічної обробки, верстати та інструменти. Чернігівський національний технологічний університет, 23 с.
Ushakov, A.N. (2014). Development of a model of a stress-strain state of ‘abrasive grain-jointing material’. Bulletin of NTU ‘KhPI’ #42(2085), 59-64. [In Russain]
Ушаков, А.Н., (2014). Разработка модели напряженно-деформированного состояния «абразивное зерно-связка». Вісник НТУ «ХПІ», №42 (1085), C. 59-64.
Korotkov, V.A., & Minkin, E.M. (2014). Geometry and a stress-strain state of oriented grinding wheels with controlled form. Metal processing, 2, 62-77. [In Russian].
Коротков, В.А., & Минкин, Е.М. (2014). Геометрия и напряженное состояние ориентированных шлифовальных зерен с контролируемой формой. Обработка металлов, №2(64), C. 62-77.
Marchuk, V.I., Ravenets, L.M., & Eshteivi, Abdulsalam Musbah (2015). To determining of force parameters of centerless grinding process of rings of roller bearings with intermittent grinding wheels. Bulletin of ZhDTU. Series: Technical sciences, 3, 34-39. [In Ukrainian].
Марчук, В.І., Равенець, Л.М., & Ештеіві Абдулсалам Мусбах (2015). До визначення силових параметрів процесу безцентрового шліфування кілець роликопідшипників переривчастими шліфувальними кругами. Вісник ЖДТУ. Серія: Технічні науки, №3(74), C. 34-39.
Tantsura, T.O., Korobochka, O.M., & Bilous, O.I. (2016). System research of stresses in a material of a grinding wheel. System technologies, 5(105), 61-67. [In Ukrainian].
Танцура, Т.О., Коробочка О.М., & Білоус О.І. (2016). Системні дослідження напружень в матеріалі шліфувального круга. Системні технології, №5(105), С. 61-67.
Tantsura, G.I., & Bilous, M.O. (2017). Stress state of a grinding wheel caused by the action of a concentrated radial force on the abrasive grain. Collection of scientific papers of Dniprovsk state technical university, Issue 1(30), 59-64. [In Ukrainian].
Танцура, Г.І., & Білоус, М.О. (2017). Напружений стан шліфувального круга від дії зосередженого радіального тиску на абразивне зерно. Збірник наукових праць Дніпродзержинського державного технічного університету, Вип. 1(30), С. 59-64.
Zhao, B., Yu, T., Ding, W., & Li, X. (2017). Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites. Chinese Journal of Aeronautics Volume 30, Issue 6, 2004-2015.
How to Cite
Belmas, I., Tantsura, G., Zaldya, S., & Gaponenko, A. (2018). Stresses in a grinding wheel. Fundamental and Applied Researches in Practice of Leading Scientific Schools, 26(2), 225-230. Retrieved from